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I. INTRODUCTION

Distributed electrical transmission lines that consist of a
large number of identical sections have been used for the
experimental study of the propagation of KdV solitons which
satisfy the famous Korteweg–de Vries equation. This equa-
tion was originally derived to model the shallow water wave
experiments of John Scott Russel in the 19th century. It is
also found in plasmas and dusty plasmas to describe the
propagation and interaction of acoustic solitons �1–8�. Dur-
ing the subsequent 40 years our knowledge of solitons has
developed to a mature theory. Many soliton equations de-
scribing nonlinear systems are known and solitons them-
selves have been observed �directly or indirectly� in various
media. However, there are only a few systems where solitons
are easily and directly observed in controlled laboratory ex-
periments. Nonlinear electrical transmission lines are good
examples of such systems �9,10�. They are discrete systems
but approximate the continuum system quite well, as will be
seen below. The nonlinear transmission �NLTLs� provide a
useful way to check how the nonlinear excitations behave
inside the nonlinear medium and to model the exotic prop-
erties of new systems �10�. Let us also point out that, re-
cently, NLTLs have proven to be of great practical use in
extremely wideband �frequencies from dc to 100 GHz� fo-
cusing and shaping of signals �11� which is usually a hard
problem.

The multiplicative process in nonlinear transmission lines
is understood as a direct consequence of soliton like propa-
gation in this medium. Qualitatively, the origin of solitons in
NLTLs is explained by the balance between the effect of
dispersion �due to the periodic location of capacitors in the
NLTL� and nonlinearity �due to the voltage dependence of
the capacitances�. A soliton is a localized wave form that
travels along the system with constant velocity and unde-
formed shape �12�. Physically, signal shaping means chang-

ing certain features of incoming signals, such as the fre-
quency content, pulse width, and amplitude. However, all of
the above cited studies are limited to a single mode soliton
that the single LC transmission line adequately describes in
certain parameter regimes, whereas there are many physical
phenomena which can be investigated by the use of more
than a single electrical transmission line.

To our knowledge, there are only a few works which re-
port on the study of a soliton in the coupled NLTLs. Kaku-
tani et al. have �13� theoretically and experimentally reported
on the KdV solitons on a coupled LC transmission line con-
sisting of two nonlinear LC ladder lines connected by iden-
tical intermediary capacitors and have shown that the net-
work admits two different modes, in each direction of wave
propagation. Next, the extension of these studies to envelope
solitons has been made by Essimbi et al. �14� and Yemele
et al. �15�. The soliton propagation and interaction on two-
dimensional NLTLs have also been studied by Taniuti et al.
�7�.

Extending the transmission line model to higher dimen-
sions has proven to be difficult both theoretically and experi-
mentally. Experiments and resonances of a two-dimensional
transmission line have been examined in �16,17� by assum-
ing that the nonlinear capacitance C is of the form
C=

C0

1+�V/V0�p , where V is the voltage in the transmission line,
C0, V0, and p are all constants. Considering the nonlinear
capacitance of the above form, Duan et al. �5� have studied
the nonlinear waves on coupled nonlinear transmission lines
�5�. They found that, in the continuum limit, the voltage for
a transmission line is described by a modified Zakharov-
Kuznetsov �ZK� equation. The exact cutoff frequencies of
the growth rate of the solitary waves for the transverse per-
turbations have been obtained. Some instability for solitary
traveling waves between two cutoff frequencies has been
found. In the special case where p=1 and in the continuum
limit, Kengne et al. found that the dynamic of any two wave
packets in the nonlinear transmission line is described by
coupled nonlinear Schrödinger equations �18�. They derived
a set of explicit criteria of modulational �in�stability of the
Stokes waves propagating in the lines. In this paper, we as-
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sume that the capacitance C is voltage dependent and of a
more general form, but only for small-amplitude perturbation
voltage, as follows:

C�V� =
dQ

dV
= C0�1 − 2�V + 3�V2 + ¯ � , �1�

where C0 is a constant, V is the perturbation voltage in the
transmission line shown in Fig. 1, and � and � are the non-
linear positive coefficients of the electrical charge Q stored
in the capacitor of the line. In this paper, we restrict our-
selves to the case in which the perturbation voltage V is
sufficiently small compared to the equilibrium voltage, so we
neglect the higher-order terms in Eq. �1� �19�.

The purpose of this work is to conduct the linear stability
analysis of solitary waves propagating in coupled nonlinear
transmission lines with respect to long-wavelength trans-
verse perturbations on the basis of the nonlinear Schrödinger
�NLS� equation. It is well known that the NLS equation is
one of the most famous equations in nonlinear science, par-
ticularly for the soliton theory. The NLS equation has already
been used to study solitary waves propagating in single non-
linear transmission lines �see, for example, Refs. �7,8,20��.
The work �7� investigates the NLS equation theoretically,
while the works �8,20� experimentally investigate the NLS-
type solitons in an electric transmission line. Recently, many
researchers have studied the transverse stability of solitary
waves on coupled nonlinear transmission lines, using the
KdV equation as the governing equation of the network �see,
for example, Refs. �4,13,14��, and, to our knowledge, no
work has investigated the transverse stability of solitary
waves propagating in a coupled NLTLs using the NLS equa-
tion as the governing equation. Therefore, our investigation
of the transverse perturbations to the two-dimensional NLS
equation of the NLTLs may be helpful in other fields of
physics.

This paper is organized as follows. In Sec. II, we describe
the coupled transmission lines to be studied and write the
main circuit equations. In the semidiscrete limit, we show, in
Sec. III, that the governing equation of the network can be
reduced to a two-dimensional cubic nonlinear Schrödinger
equation. The transverse stability of solitons will be investi-
gated in Sec. IV, while the main results are summarized in
Sec. V.

II. COUPLED NONLINEAR LC DISPERSIVE
TRANSMISSION LINES

The basic model used in this work consists of a nonlinear
network with many coupled nonlinear LC dispersive trans-
mission lines. We imagine that there are many identical dis-
persive lines �21,22� which are coupled by means of capaci-
tors C2 at each node, as shown in Fig. 1. Each section of line
consists of a constant inductor L in parallel with a linear
capacitor CS �dispersive element� in the series branch and a
nonlinear capacitor of capacitance C=C�V� in the shunt
branch. The nodes in the system are labeled with two dis-
crete coordinates n and m, where n specifies the nodes in the
direction of propagation of the pulse, and m labels the lines
in the transverse direction. We apply Kirchhoff’s law in the
orthogonal loops and obtain the circuit equations for this
system as follows:

L
�In,m

1

�t
= Vn,m − Vn+1,m, �2�

In,m
2 = C2

d

dt
�Vn,m − Vn,m+1� ,

In,m
1 − In,m

1,1 = CS
d

dt
�Vn−1,m − Vn,m� , �3�

�Qn,m

�t
= In−1,m

1 − In,m
1 + In,m−1

2 − In,m
2 . �4�

Therefore, we obtain the circuit equation

�2Qn,m

�t2 = � 1

L
+ CS

�2

�t2��Vn−1,m − 2Vn,m + Vn+1,m�

+ C2
�2

�t2 �Vn,m−1 − 2Vn,m + Vn,m+1� . �5�

By inserting the above expansion of the capacitance �1�
into Eq. �5�, we obtain the equation

�2Vn,m

�t2 + ��0
2 + d0

�2

�t2��2Vn,m − Vn−1,m − Vn+1,m�

− �0
�2

�t2 �Vn,m−1 − 2Vn,m + Vn,m+1�

= �
�2Vn,m

2

�t2 − �
�2Vn,m

3

�t2 , �6�

where the linear wave speed �0, the coupling coefficient �0,
and the dispersion coefficient d0 are given by

�0
2 =

1

C0L
, �0 =

C2

C0
, d0 =

CS

C0
. �7�

Equation �6� with coefficients �7� is the difference-
differential equation governing the wave propagation in the
network under consideration. In this equation, �0 is the char-
acteristic frequency of each line, �0 is the coupling coeffi-
cient, and d0 is the dispersive element. As one can see from
Eq. �7�, all of the lines have the same characteristic fre-

FIG. 1. Part of a system of nonlinear dispersive transmission
lines coupled by a capacitor C2.
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quency. This is due to the fact that all of the lines are iden-
tical.

III. MODULATED WAVES IN THE COUPLED NONLINEAR
DISPERSIVE TRANSMISSION LINES

Modulated waves in the network are described by consid-
ering waves with a slowly varying envelope in time and
space with respect to a given carrier with angular frequency
� and wave numbers k and q. We then use the reductive
perturbation method in the semidiscrete limit �7,22� which
means that the dominant motion is in the n direction, and
define three stretched variables in the wave frame x=��n
−vgt�, y=�m, �=�2t, where � is a small parameter and vg is
a constant �the meaning and expression of constant vg will be
given below�. In addition, the voltage in the transmission line
is expanded in the form

Vn,m = �A�x,y,��exp�i�� + �2�	�x,y,�� + B�x,y,��exp�2i���

+ c.c., �8�

with �=kn+qm−�t, where c.c. stands for the complex con-
jugate. Substituting Eq. �8� into Eq. �6�, we obtain different
equations as power series of �.

�i� The coefficient of �, proportional to exp�i��, gives the
dispersion relation

�2�k,q� =

4�0
2 sin2 k

2

1 + 4d0 sin2 k

2
+ 4�0 sin2 q

2

. �9�

Because the dominant motion is in the n direction, the group
velocity vg is taken to be vg=d� /dk,

vg =
��0

2 − d0�2 − �sin k

��1 + 4d0 sin2 k

2
+ 4�0 sin2 q

2
� . �10�

The dispersion relation �9� shows that the angular frequency
� decreases as the coupling parameter C2=C0�0 increases.
This situation is confirmed by Figs. 2�a� and 2�b� where the
angular frequency � is plotted as a function of the wave
number k or q for different �0.

�ii� The coefficient of �2, proportional to exp�2i��, gives
B= �2�

�d0−�0
2�sin2 k+�0 sin2 q−�2 A2.

�iii� The coefficient of �4, proportional to exp�0i�� gives

	=
2�vg

2

vg
2−�0

2 �A�2.
�iv� The coefficient of �2, proportional to exp�i��, leads to

���1 + 4d0 sin2 k

2
+ 4�0 sin2 q

2
�vg + �d0�2 − �0

2�sin k	 �A

�x

+ �0�2 sin q
�A

�y
= 0. �11�

�v� From the coefficient of �3, proportional to exp�i��, we
obtain, under the solvability conditions q�2
Z �the condi-
tion under which we will have a nonzero complex amplitude
A�x ,y ,��� and

f�k� = �0
−2�vg

2 − �0
2 cos k + d0�4vg

2 sin2 k

2
+ 4�vg sin k

+ �2 cos k� − �2�0	 = 0, �12�

the following two-dimensional nonlinear Schrödinger equa-
tion for A:

i
�A

��
+

1

2
P�A + Q�A�2A = 0, �13�

with

P = −
��0

1 + 4d0 sin2 k

2

,

Q = −

��3� +
4�2vg

2

�0
2 − vg

2 +
2�2�2

��0
2 − d0�sin2 k + �2�

2�1 + 4d0 sin2 k

2
� . �14�

(a)

(b)

FIG. 2. The profiles of the dimensionless angular frequency �
as a function of the wave number k for q=
 �a� and as a function of
the wave number q for k=
 �b� for different values of �0

=0.1,0.5,1.5,10. The coefficients �0
2= 1

4 �1018 and d0= 1
2 have

been used in these plots.
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From the expression �10� for the group velocity and the
solvability condition q�2
Z, it is seen that Eq. �11� is sat-
isfied for every A.

The numbers P and Q are the dispersion and nonlinearity
coefficients, respectively, of the nonlinear Schrödinger equa-
tion �13�, and are negative �one can easily verify this fact by
inserting the expression for vg in Eq. �14��. For given coef-
ficients d0, �0, and �0, the dispersion coefficient P, the non-
linearity coefficient Q, and the group velocity vg �10� are
functions of the discrete wave numbers kl, which are roots of
equation f�k�=0, so that ��k ,2
Z��0. In Fig. 3, f�k� given
by Eq. �12� is plotted as a function of the wave number k for
the parameters d0=0.75 and �0=0.5. This figure shows that
f�k� admits many real zeros for which ��k ,2
Z��0.

The two-dimensional NLS equation �13� possesses a
y-independent �that is, plane or line� solitary wave solution.
Considering some higher-order perturbations in the y direc-
tion, we are interested in the stability of the solitary wave
solution.

IV. TRANSVERSE STABILITY OF PLANE
SOLITARY WAVES

It is well known that the Benjamin-Feir instabilities, ex-
hibited by a dispersive nonlinear medium, constitute the
proof of its capacity to support envelope solitons in certain
propagation domains �23–25�. It follows from Eq. �13� that a
continuous slowly modulated plane wave should be unstable
if PQ0. This instability leads to the formation of envelope
pulse solitons train, plane wave solution of Eq. �13�,

A0�x,�� =
Amax exp�ive�2x − Pvp��/4�

cosh��2x − Pve��/2Se�
, �15�

where ve and vp are the envelope and phase velocities, re-
spectively, Se=
P /Q /�Amax is the spatial soliton extension,
Amax is the nonlinear maximum amplitude of the soliton, and
� is a positive parameter. Without loss of generality, we can
take �2� �1,3� �we note that we can always write Se as Se

=
P /Q / �̂Ãmax, where Ãmax= �

�̂
Amax and �̂2� �1,3��.

Following Ody et al.�26�, we impose on the line soliton
�15� a sinusoidal perturbation in the y direction and study the
growth of this perturbation as the soliton propagates in the x
direction. Using the transformations

x� =
x

Se
−

Pve

2Se
�, �� = �, y� =

y

Se
, u = A exp�− i

Seve

2
x�� ,

�16�

and dropping primes, we find that Eq. �13� and the plane
wave solution �15� become

i
�u

��
+

P

2Se
2�u + Q�u�2u + P

ve
2

8
u = 0, �17�

u0�x� =
Amax

cosh x
, �18�

respectively.
Now, let us investigate the stability of the solitary wave

solution. We may take the perturbation to be in the y direc-
tion. We follow Edy et al. and assume a perturbation solution
to the two-dimensional �2D� NLS equation �17� of the form

up�x,y,�� = u0�x� + 1
2����x�exp�iKy + ���

+ �*�x�exp�− iKy + �*��� . �19�

In Eq. �19�, � is a small real parameter controlling the per-
turbation strength, ��x� is the perturbation complex function,
K and � are the wave number of the perturbation and the
complex frequency, respectively; the asterisk stands for the
complex conjugate. Inserting Eq. �19� into Eq. �17� and
keeping only the linear terms in � leads to the following
equations for the complex function ��x�:

�� + �ve
2P + 8i�

4Q�2Amax
2 − K2 +

6

�2 sech2 x�� = 0. �20�

First we note that in the limit x→ ��, Eq. �20�, we have

�� + �ve
2P + 8i�

4Q�2Amax
2 − K2�� = 0.

Substituting now �=�̃ exp��x�, one can see that � satisfies
the quadratic equation

�2 − �4Q�2Amax
2 K2 − ve

2P

4Q�2Amax
2 − i

2�

Q�2Amax
2 � = 0. �21�

Because the roots � j, j=1,2, of Eq. �21� are distinct, the
corresponding solutions of Eq. �20� are given by

� j�x� = exp�� jx�hj�x� ,

where hj�x� is the solution of equation

� d2

dx2 + 2� j
d

dx
+

6

�2 sech2 x�hj = 0. �22�

A. Case where �2=3

In the case where �2=3, we find hj�x�=tanh x−� j. Con-
sequently,

� j�x� = �tanh x − � j�exp�� jx�, j = 1,2. �23�

Writing �=�r+ i�i, we find from Eq. �21�,

FIG. 3. Plot of f�k� for the wave number q=2
 and the coeffi-
cient parameters d0=�0=0.5.
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� j = �− 1� j−1�a + ib� , �24�

where a and b are defined by

a2 =
�0 + 
�0

2 + �0
2

2
, b2 =

− �0 + 
�0
2 + �0

2

2
, �25�

with

�0 =
4Q�2Amax

2 K2 + 8�i − ve
2P

4Q�2Amax
2 , �0 = −

2�r

Q�2Amax
2 .

�26�

It is evident that Re��1�Re��2��0. Without loss of general-
ity, we consider that Re��1��0 and Re��2��0. In order that

all the � j�x�, j=1,2, should be bounded, it is necessary and
sufficient that Re�� j�=0, i.e., a=0. Equation �25� then gives

�i �
ve

2P

8
−

Q�2Amax
2 K2

2
, �r = 0. �27�

Conditions �27� are the transverse stability’s conditions.
Let conditions �27� be violated. Then Re��1� will be posi-

tive and Re��2� will be negative. If either �r=0 or �r�0,
then the perturbed solution �19� that corresponds to the per-
turbation function �1�x� will increase exponentially with x
0. If �r0, then the perturbed solution �19� correspond-
ing to the perturbation function �1�x� will increase exponen-
tially with both x0 and �0. With the perturbation func-

(a)

(b) (c)

(d) (e)

(f)
(g)

FIG. 4. Propagation of the
soliton-signal voltage on the net-
works at a given time t=100 �s
under the conditions of the trans-
versal stability �27�. From the top
to the bottom, the plots corre-
spond to the value of m=1, m=3,
and m=8, respectively.
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tion �2�x�, the perturbed solution �19� will remain bounded
in the both x direction and � direction for any �r�0; this
perturbed solution will grow exponentially in the � direction,
if �r0.

B. Case where �2=1

In the case where �2=1, it is helpful to write Eq. �20� in
the form

�−
d2

dx2 + 1 −
6

cosh2 x
�� = �� , �28�

� = 1 +
ve

2P + 8i�

4Q�2Amax
2 − K2. �29�

Seeking the solutions of Eq. �28� in the form ��x�
=h�x�exp�qx�, we find either h�x�=−tanh2 x− ��−3�

6 , q=0 for
�� �−3,1� or h�x�=sinh x /cosh2 x, q=0, for �=0. We thus
obtain the following solutions of Eq. �20�:

�3�x� =
1

cosh2 x
, � = i

4Q�2Amax
2 �4 − K2� + ve

2P

8
,

�30�

(a) (b)

(c) (d)

(e)

(g)
(h)

(f)

FIG. 5. Propagation of per-
turbed soliton-signal voltage on
the different networks at a given
time t=100 �s under the violation
of conditions �27� of the transver-
sal stability. From the top to the
bottom, the plots correspond to
the value of m=1, m=3, m=8,
and m=15, respectively.
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�4�x� =
1

cosh2 x
−

2

3
, � = i

ve
2P − 4Q�2Amax

2 K2

8
, �31�

�5�x� =
sinh x

cosh2 x
, � = i

4Q�2Amax
2 �1 − K2� + ve

2P

8
.

�32�

Thus, in the case where �2=1, the perturbation functions
�3�x�, �4�x�, and �5�x� are always bounded as x→ ��, and
the complex frequency �� iR. Therefore, the perturbed so-
lutions �19� with the perturbation functions and complex fre-
quencies given by Eqs. �30�–�32� are bounded in both the x
and the � direction. The soliton solution is then stable under
the transverse perturbation in the y direction.

C. Computational simulations

For the computational simulation, we use the following
line parameters, C0=2 pF, CS=1.5 pF, C2=1 pF, L=1 �H,
�=0.21 V−1, �=0.0197 V−2. The coefficients �14� of Eq.
�13� are then computed for the wave number k=1.424 12. In
order to obtain an initial voltage profile, required as input at
section n=0 of the system, we use expressions �23� and
�30�–�32� for the perturbed solitary wave. We first revert to
the laboratory coordinates n, m, and t by using Eq. �16� and
the transformations x=��n−vgt�, y=�m, �=�2t. We then use
formula �8� in which 	 and B are replaced by their expres-
sions in terms of A, and A is replaced by the perturbed soli-
tary wave. After this is done, the input voltage as a function
of m and t is obtained by setting n=0, specifying values of
the perturbation wave number K, the complex frequency �,
and the soliton parameters �ve, vp, Amax, ��. The pulse then
propagates in the dominant direction n.

Figure 4 shows the propagation of the envelope soliton on
the different networks �for distinct m�. In this figure, we
show the signal voltage �in Volts� at a given time �t
=100 �s� as a function of cell number n. The top figure

shows the unperturbed soliton-signal accordingly to Eq. �8�
with �=0.005. The two columns show the perturbed soliton
signal given by Eq. �19� with the perturbation functions �23�,
for K=454.9, �r=0, �i=0.4, �=
3, Amax=0.5, and �
=0.0001. The conditions �27� of the transversal stability are
then satisfied. The figures of the left-hand column corre-
spond to the perturbation function �1�x�, while those of the
right-hand column correspond to �2�x�. The plots of the two
columns show that the perturbation functions �1�x� and
�2�x� deform the propagating solitary signal.

The propagation of the envelope soliton on the different
networks �for distinct m� in the case where the transversal
conditions �27� are violated is shown in Fig. 5. Here, we plot
the soliton-signal voltage at the given time �t=100 �s� as a
function of cell number n. For the plots of this figure, we
have used �=0.005, Amax=0.5, �=0.0001, �r=−0.2, �i
=0.4, �=
3, and K=454.905. The perturbed soliton signals
of this figure correspond to the unperturbed soliton-signal
voltage on the top of Fig. 4. The figures of the left-hand
column correspond to the perturbation function �1�x�, while
those of the right-hand column correspond to �2�x�. As it is
seen from the plots of the two columns, the propagating per-
turbed solitary signal under the perturbation functions �1�x�
and �2�x� conserves the form of the unperturbed solitary
wave.

The left-hand and the right-hand columns in Fig. 4 present
a symmetry, different from the one present by the two col-
umns of Fig. 5. These two figures show that the form of the
perturbed soliton at the given time depends on the line on
which the wave propagates �i.e., on m�.

In Fig. 6, we plot the envelope on the different networks
in the case where �=1. This figure shows the soliton-signal
voltage at a given time t=100 �s as a function of cell num-
ber n. The following solution parameters are used: �=0.005,
Amax=0.5, �=0.01, and K=0.905. The figures of the first
column, the second column, and the third column correspond
to the perturbation function �3�x�, �4�x�, and �5�x�, respec-
tively. This perturbation functions and the corresponding

(b)
(a) (c)

(d) (e)

(g) (h) (i)

(f)

FIG. 6. Propagation of the en-
velope soliton on the different
lines of the network in the case
where �=1. From the top to the
bottom, the plots correspond to
the value of m=1, m=200, and
m=400, respectively.
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complex frequency � are given by Eqs. �30�–�32�. The dif-
ferent plots of Fig. 6 show that the soliton amplitude in-
creases with m. The plots of Fig. 6 show that the perturbation
functions �3�x� and �4�x� perturb the propagating solitary
wave in the same manner, while the perturbation function
�5�x� deforms the solitary wave.

V. CONCLUSION

In this paper, we have considered a system of coupled
nonlinear dispersive transmission lines in which the nonlin-
ear capacitance C is of a general form C�V�= dQ

dV =C0 �1
−2�V+3�V2+ ¯ �. Using the reductive perturbation method
in the semidiscrete limit, we show that the voltage for the

transmission lines is described by a two-dimensional nonlin-
ear Schrödinger equation. The exact transverse perturbation
eigenfunctions and the corresponding complex frequencies
are found when studying the transverse stability of solitary
waves.
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